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The d-dimensional random Cantor set is a generalization of the classical "middle- 
thirds" Cantor set. Starting with the unit cube [0, 1 ]d, at every stage of the 
construction we divide each cube remaining into M a equal subcubes, and select 
each of these at random with probability p. The resulting limit set is a random 
fractal, which may be crossed by paths or (d-l)-dimensional "sheets". We 
examine the critical probability ps(M, d) marking the existence of these sheet 
crossings, and show that Ps(M, d)--+ 1 -Pc( M J) as M--* oo, where p,.( M d) is the 
critical probability of site percolation on the lattice I~ a obtained by adding the 
diagonal edges to the hypercubic lattice 7/( This result is then used to show 
that, at least for sufficiently large values of M, the phases corresponding to the 
existence of path and sheet crossings are distinct. 

KEY WORDS: Random Cantor sets; fractal percolation; critical probability. 

1. I N T R O D U C T I O N  

We consider the fractal percolation process first proposed by 
Mandelbrot  ~tz) and subsequently studied by several authors. In this section 
we briefly review their work and present our main  results. Let d >12, M i> 2, 
and 0 < p < 1. We construct the "d-dimensional random Cantor  set" C [M] 
as follows. Write C o for the uni t  cube [0, 1] a of R a. Divide Co into M a 

equal closed subcubes, each of side length M - t ,  in the natural  way. Select 
each of these subcubes independently with probabili ty p, and write C~ for 
the un ion  of th~se level-1 cubes thus selected. Similarly, divide each cube of 
C1 into M a subcubes each of side length M -2 and select each of these inde- 
pendently with probabil i ty p, writing C2 for the un ion  of these l eve l -2  

cubes. Cont inu ing  this process, we obtain a decreasing sequence of closed 
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sets Co ~_ C] ~_ C2 ~_ ..., with limit C [M] =- (]n~176 C n. We shall normally 
drop the superscript when M is fixed, and write the limit set as just C. 

Provided that  the process does not become extinct ( that is, provided 
that  C,,-r ~ for all n), the set C is a r andom fractal which may  be in one 
of several "phases" as characterized by Dekking and Meester. tS) In 
particular,  we define path-percolation to occur in a set S if S contains a 
connected componen t  intersecting both the "left-hand face" L =  {0} x 
[0, I ]  d-~ and the "right-hand face" R =  {1} x [0, 1] a-~ of Co. Chayes 
et aL (3~ demonstra te  the existence of a nontrivial phase transition to path-  
percolation in the set C as we vary the value of p, that  is, there exists a 
critical probabil i ty pc(M, d) with 0 < pc(M, d) < 1 such that  i f p  > pc(M, d), 
then path-percolat ion occurs with positive probabil i ty in C, while if 
p < p,.(M, d), then path-percolat ion almost  surely does not occur in C. [ In 
fact, at least if d =  2, path-percolat ion occurs with positive probabil i ty  in C 
whenever p>>,pc(M,d).] Meester ('3) gave an alternative definition of 
percolation in terms of arcwise-connected components ,  and showed this to 
be probabilistically equivalent to the notion of path-percolat ion above. 

Chayes and Chayes t21 considered the behavior  of  the critical probabil-  
ity pc(M, 2) for large values of  M. They proved that  

pc(M, 2)~pc(7/2) as M ~ o z  (1.1) 

where pc(7/2) denotes the critical probabil i ty  for site percolation on the 
ordinary square lattice with vertex set 7/2. See G r i m m e t (  9~ for a general 
account of  percolation theory on this and other lattices. 

Falconer  and G r i m m e t (  6"7~ generalized this result to d>~2 in the 
following way. Let [1_ a be the d-dimensional lattice with vertex set 7/u and 
edge set given by the adjacency relation: x ~ y if and only if [xi - Yi[ ~ 1 for 
all i, and x ; =  Yi for at least one value of i, where x =  (x~ ..... Xd) and 
Y=(Y~ ..... Ya). When d = 2 ,  0_ 2 is the usual square lattice 7/2 as above. If  
d~> 3, then g_a contains the d-dimensional hypercubic lattice 7/a as a strict 
sublattice. They concluded that  

p, .(M,d)~pc(L a) as M ~  (1.2) 

where p~(l_ u) denotes the critical probabil i ty for site percolat ion on the 
lattice fl_u. 

When d >/3, we may  also consider the existence of ( d - 1  )-dimensional 
"sheets" crossing C. We define sheet-percolation to occur in a set S if S con- 
tains a surface separating the left-hand face L and the r ight-hand face R 
of Co. It  will be easier to work  with the complementary  set S c = E0, 1 ]u\S 
and observe that  sheet-percolation occurs in S if and only if S c does not 
contain a continuous path  y: [0, 1 ] --* S c such that  7(0) ~ L and ?( 1 ) ~ R. 
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We define ps(M, d) = sup{p:  P(sheet-percolat ion occurs in C) = 0}. 
Certainly we have ps(M, d) >1 p,.(M, d) > 0, since any surface crossing 
[0, 1 ]a contains a pa th  crossing [0, 1 ]a (subject to reordering the axes). As 
observed by Chayes etaL (4) in the case d = 3 ,  it is easy to show that 
ps(M, d ) <  1, by a method analogous to the case of  path-percolat ion in two 
dimensions. 

We now define a further d-dimensional lattice. Let I~ d be the lattice 
with vertex set 7/a and edge set given by the adjacency relation: x ~ y if and 
only if ]xi-Y,-I ~< 1 for all i. Thus, for d~> 2, [~a contains both  the lattices 
Z d and L d as strict sublattices, and is obtained from 7/a by an enhancement  
permitt ing connections between "diagonally adjacent" pairs of  vertices. In 
addition, we define the sublattice Bu(~  d) of [~d of size N x  .. .  x N to be 
the lattice with vertex set {0, I ..... N -  1} a and edges inherited from [~d. 

We study the problem of site percolation on the lattice I~ d, and let 
p , . (~a)  denote the critical probabil i ty for this process. 

T h e o r e m  1. ps(M, d)>~ 1-pc(M d) for all values of  M and d. 

Theorem 2. Let p > 1 - p c ( M d ) .  Then for all values o f d  

P(sheet-percolat ion in C [M])--* 1 as M--* oo 

T h e o r e m  3. For  all values o f d  

ps(M,d)--*l-pc(M a) as M ~  

The p roof  of  Theorem 3 is immediate  from Theorems 1 and 2. 
The reader should contrast  this result with (1.2). The lattice ~d ,  rather 

than Ik d, appears  because it is the existence of paths in the complement  
which determines whether or not sheet-percolation occurs; for this, it is 
sufficient for vacant  cubes to meet only at a corner. 

Corol lary. For  all d>~3, we have p ,.( M, d) < p s( M, d) for all 
sufficiently large values of  M. 

Proof of Coro//ary. Combining (1.2) and Theorem 3, it is sufficient 
to show that  

pc(L d) < 1 -pc(M a) (1.3) 

We note that  M d is obtained from L d by an enhancement  permitt ing extra 
connections between vertices, so certainly we have pc(Md)<~pc(Ld). 
Similarly we have pc(O_d)<~pc(Y_ d) < 1/2, where the last inequality is from 
Campanino  and Russo, (~) which is sufficient for (1.3). II 
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This corollary extends a conclusion of Chayes et al., 14) proved in the 
special case of d =  3 and the box [0, 2] x [0, 2] • [0, 1 ], to the unit cube 
[ 0, 1 ] d, showing that, at least for sufficiently large M, the path-percolation 
and sheet-percolation phases are indeed distinct phases. 

Note also that when we apply Theorem 3 in the case d =  2, the con- 
cepts of path- and sheet-percolation are identical (subject to interchanging 
the axes), and hence we deduce that pc(M, 2)---, 1 -pc(~J[]2). In conjunction 
with (1.I), this shows that pc(M 2) + pc(;;'/2) = 1, an equality observed by 
Sykes and Essam c16) and subsequently rigorously proved by Russo ~15~ and 
Kesten.C ~ 1 

Exact values for critical probabilities of site percolation in these lat- 
tices are not known. The best known bounds for pc(7/2) are currently 
0.556<pc(7/2)<0.682, the first inequality due to van den Berg and 
Ermakov, c~71 the second due to Zuev, Ils~ with the exact value likely to be 
around 0.593. 

We prove Theorem 1 in Section 2 and Theorem 2 in Section 3. 

2. PROOF OF T H E O R E M  1 

To prove that ps(M, d)>t 1 - p c ( M  a) for all values of M and d, we 
show that whenever p < 1 -  p,.(Ma), then sheet-percolation does not occur 
in C, almost surely. Note that from the compactness of C it follows that 

{sheet-percolation in C} = ~] {sheet-percolation in C,,} 
n l ~ 0  

(2.1) 

which is an intersection of a decreasing sequence of events, and therefore 

P(sheet-percolation in C) = lim P(sheet-percolation in C,,) (2.2) 
n ~  o o  

We define another, stronger concept of percolation as follows: We say 
that full sheet-percolation occurs in a set S if the interior of S separates the 
left-hand face L and the right-hand face R of Co, that is, if and only if S*, 
defined by S*=[O, 1]a\s, does not contain a continuous path 
~,: [0, 1]---, S* such that y (0)~L and y(1)~R. Thus, we may think of a 
family S of level-n cubes that forms a surface separating the left- and right- 
hand faces of Co as being full if all the pairs of adjacent cubes { C', C"} 
which are necessary to block paths y in S c have dim(C' n C") = d -  1, that 
is, C' and C" intersect in a ( d -  1 )-dimensional "face" rather than an "edge" 
of dimension less than ( d - 1 ) .  
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L e m m a  1. We have 

P(sheet-percolation in C) = lira P(full sheet-percolation in C,,) 
S T ~  OO 

The proof of this lemma, which is omitted, is based upon that of 
Lemma 5 of Falconer and Grimmett. (7) The idea is to show that if a sheet 
crossing the set C,, passes through an edge of dimension less than ( d -  1), 
then for some m > n, enough of the level-m subcubes touching that edge 
will be removed so as to prevent that particular crossing, almost surely. 

Continuing with the proof of Theorem l, let p < 1 - p , . ( ~ d )  and write 
q = 1 - p .  We consider site percolation on the lattice •d, with sites being 
declared open independently at random with probability q. Since q is 
greater than the critical probability for this process, we have 

Pq(the origin belongs to an infinite open cluster) > 0 (2.3) 

where Pq is the appropriate product probability measure. Let Oq(BN(~J~d)) 
denote the probability that there exists a path of open vertices linking the 
left-hand face {0} x {0, 1 ..... N - 1 }  d-I  and the right-hand face {1} x 
{0, 1 ..... N - l }  d-' in site percolation on the lattice B~Md). It follows 
from Theorem (6.125) of Grimmet(  9~ that there exists r > 0  such that 

Oq(BN(Md)) >/T (2.4) 

for all N > 0. 
For each n~>l, we define C,*=[0,  1]d\C,, giving an increasing 

sequence of closed sets C6 ~ _~ C* ~ C* ~ ..., and note that full sheet-per- 
colation occurs in C,, if and only if C,* does not contain a continuous path 
7: [0, 1] ~ C,* such that 7 (0 )eL  and 7(1)eR.  

Let E , =  {full sheet-percolation occurs in C,} and set p ,  = P(E,,). To 
obtain estimates on the p,, we compare the sets C,* (consisting of a union 
of cubes of side length M - " )  to sublattices of [~d in the natural way: Open 
vertices of B~(M d) correspond to cubes present in C,*, with two vertices 
being considered adjacent if and only if the corresponding cubes have at 
least a point in common. By this comparison, conditioning on full retention 
at level-(n-  1 ), we find that 

c C,,_l=(~)=Oq(B,w,(Md))>>.r>O (2.5) P(E.I * 

Therefore Po = 1 and 

p,,~< f i  (1-Oq(BMj(Ma)) 
j = l  

~<(1 - v ) "  (2.6) 
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where 

, ,  i ) c[ I~"'1] = ( j ~  M-JiJ . ,  ..... M - J i z d  
1 j ~ l  

setting C[ ~2~ ] = [ O, 1 ]'/. 
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by (2.5) for each 1l/> 1, and so 

p ,  = P(full sheet-percolation in C,,) --* 0 as 17 ~ oo (2.7) 

Applying Lemma 1, we conclude that 

P(sheet-percolation in C) = 0 (2.8) 

as required. I 

3. PROOF OF T H E O R E M  2 

Let d>~2, p >  1--pc(Md), and choose an e>O such that ( 1 - e ) p >  
1--p,.(Md). We shall show that there exists M(e) such that for all 
M >1 M ( e ) ,  we have 

P(sheet-percolation in C,,) >1 1 - e (3.1) 

for all n/> 1, and hence deduce, using (2.2) and letting e ~ O, that 

P(sheet-percolation in C tMl)--* 1 as M ~  m (3.2) 

In the following proof, we shall assume that M is divisible by 5, 
although it will be clear that the method works for any M/> 5, with the 
necessary slight modifications if M is not divisible by 5. 

We adopt the following notation for labeling subcubes of [ O, 1 ]'1. Let 
jd  = { O, 1 ..... M -  1} d and write 

jd . , , ,= {(i, ..... i,,,): i j e J  d} 

setting jd .O= { ~ } .  With each h~dex 

I r = (i I ..... i,,,) = ((il. t ..... il.a) ..... (i,,,. 1 ..... ira.d)) ~ jd . , ,  

we associate the level-m subcube C [ I  r of [0, 1 ]d given by 

C[I  r = e l l  ~'1] + [0, M - " ]  a 
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Suppose that we are given a family { Z [ I ] :  I~U, , ,~o J't ' '} of inde- 
pendent random variables, each taking the value 1 with probability p, 
and 0 otherwise. For  each I t ' l = ( i ~  ..... i , . ) e J  d'"' we define the indicator 
function 

lz[i i . ,~ ] = ~2[ Z[(i~ ..... ij)] 
j = l  

and observe that 

l z [ l t . , +  11] = lz[l~.,~] Z[ l l . ,+  1~] (3.3) 

for every I ~"' + 1~ = (i~.,~, i.,+ ~) ~ ja..,+ 1. Then by our  construction, the set 
C. is the union of those level-n cubes C[I  I''~] satisfying l z [ I  ~'1] = 1. 

Let lC"'lsJ a''' and k = ( k l  ..... ka )e  {0, 1, 2, 3, 4} a. Define the level-m 
block B[II '~; k] by 

1 b -  ~ , / "  - m "1 B [ l , . , , ; k ] = c [ l ~ . , ~ ] + ( � 8 9  .... 3'~,, "'* , + [ 0 , ~ 3 M  .... ]a 

Then each level-m cube C[I  t"'~] can be written as the union of the 5 d 
level-m blocks contained therein, and each level-m block B[I~"~; k] is the 
union of (M/5)  d level-(m + 1) subcubes of C[I~'I]. 

Define the annuhls A[I~"'~; k] around a block B[I~"'~; k]  by 

A[I~"~; k]  = {c[ l  ~''1] + ( �89  -m, .... !t.5.a..j~.t .... , 

! ~ t  .... ~M .... ]a} \ in t  B[I~"'I; k]  + [ - 5  . . . .  

so that A[II"'I; k]  is composed of the 3 d -  1 level-m blocks touching 
B[II'~; k]  (or notional blocks outside [0, 1 ]d if B[lt"'~; k] intersects the 
boundary  of [0, 1 ]d). Note that, with our definitions, no extra difficulties 
will arise with those annuli not completely contained within [0, 1] d. In 
addition, we define O~i~A[II"'l; k]  and O~~ k]  to be respectively the 
inner and outer components  of the boundary  of A[It"~; k].  

Fix n >~ 1. For  every m ~< n, we now define the notions of goodness and 
availability for each level-m subcube C[ltm~], I t " ' ~ J  a'', inductively on 
m = n, n - 1 ..... 0' as follows: 

m = n: We declare all level-n cubes C[I~ lC"~ e jd.., to be good, and 
declare C[ I  I'~] to be available if Z [ I  I''l] = 1. 

m < n: Suppose that we have determined the availability of C[ I]  for 
all I ~ jd.., + I U .. .  U ja.,,. Given subsets D, E, and S of [ 0, I ] d, we say that 
S contains a ful l  sheet separating D and E if there is no continuous path 
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?: [0, 1]---, [0, I]d\S such that ?(O)~D and y (1 )eE .  We say that the 
block B[I~"'~; k]  is isolated if the set 

S = 0 { C[ T~"' + ')]: Tim+ l~ ~ ja.,.+ t and C[i  ~"' + 11] is available} 

u { • ' \ [0 ,  13"} 

contains a full sheet separating 0")A[l~ k] and O~~ k].  Figure 1 
illustrates an isolated block when d =  2. 

For  subsets X, Y of R a, we define dist(X, Y) = inf{ d(x, y): x e X, y e Y}, 
where x = ( x l  ..... Xa), y = ( ) q  ..... Ya), and d(x, y) = m a x l  ~i<~a [x i -Y i l ,  with 
the convention that inf{ ~ }  = c~. 

Let II ')(1 ), I~"')(2) ..... I~ a') be some fixed ordering of ja,,,. Using 
this ordering, we determine the goodness of each C[II"'I(j)], 1 <~j<~ M a', 
in turn as follows: For  each 1 <~j<~M a", let 

P(J) = U { C[l~ C[l~ is not good} 
I< j  

be the set of level-m cubes preceding C[I~"'(j)] that have been examined 
and found to be not good. We declare the cube C[I~"~ to be good if 
B[I~ k]  is isolated for every k e  {0 ..... 4} a such that 

dist(B[I~"'(j); k] ,  P(j))  >1 5M2 - . ,  

In addition, we declare the cube C [ I " J ( j ) ]  to be available if it is both good 
and Z [ I ~ ' ( j )  ] = I. 

Fig. 1. A level-m cube C[I ~'')] containing an isolated block B[IC'~ k]. 



Random Cantor Sets 1089 

Informally, we have defined a level-m cube C[I t"'~] to be good if it 
contains a favorable arrangement of "full sheets" of smaller cubes (the 
exact arrangement required depending upon the status of the level-m cubes 
previously examined), and to be available if it is both good and retained 
for the next level of the inductive definition. Where convenient, we shall use 
the indicator function 1~[I~')], taking the value 1 if C[I  ~")] is available 
and 0 otherwise. 

Using this procedure, we can determine the goodness of the level-0 
cube C[~ZS] = [0, 1] '/. 

L e m m a  2. { C [ Z ]  is good} ~ {sheet-percolation in C,,}. 

In order to prove Lemma 2, we shall need the following result. 

L e m m a  3. For r e<n ,  let F"'c_J a'm be a set of indices of level-m 
cubes such that IA[I I")] = 1 and l z [ l  I"')] = 1 for every II"')EF '' and 

S,.= U {C[I(""]} 
I Ira) ~ F m 

contains a full sheet separating L = { O } •  1] a - '  and R = { 1 } x  
[0, 1] '1-1. Then there exists F "'+~ ~jd,.,+~ such that 1A[I I '+~)] = 1 and 
l z [ I  ~"'+l)] = l for every l ~ " + l ) e F  "+ l  and 

S,,+1 = O {C[I ' '+l ' ] }  
! q m + 11 ~. F m + I 

contains a full sheet separating L and R. 

Proof of  Lomma 3. We define the core S,, of S,, by 

g m  = U {CEl l '+ ' ) ] :  d i s t ( C [ I " + l ' ] ,  [0, 1]d\Sm)>~sM .... } 
l lna+ l) ~ j d ,  m +  l 

so that S,,, is the union of those level-(m + 1) cubes which are distance at 
2 --  m d least ~M from I0, l ]  \S,,,. We note that since S,, consists of cubes of 

side length M -m, its core ~m must also contain a full sheet separating L 
and R. 

Pick an It": + ~ ) e j d ,  m + 1 such that C[ I r + 1~ ] c Sm; then we have 

C[I Ira+ ]~] ~ B[I~"'~; k] c {A[ll ' ) ;  k] w B[II"'); k]} c C[I  I"'~] ~_S,, (3.4) 

for some k s  {0 ..... 4} d. Since C[I I"'~] consists of 5 d equal level-m blocks 
each of side length ! az  .... it is easy to see that we also have 5 a,~ , 

2 - - m  dist(B[It"'l; k], [0, 1]d\s,,)  >>- gM (3.5) 
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All the level-m cubes contained in S,, are good, and hence we deduce from 
the definition of goodness that the block BII(" ' ;  k l  must be isolated. 

We define 

S.,+I=S,, ,n U {c[I~ l A [ l ( ' + l ' ]  =1} 
lira+ I) ~jd.m+ I 

and let F "'+~ be the set of indices of the level-(m + 1) cubes contained in 
S,,+~. Pick I(m+~)=(I('),i,,+l)EFm+l; we note that since l z [ l  ~ =1 
and Z [ P  m+tl] = 1 we have l z [ l  ~''+l~] = 1 by (3.3). 

Suppose that S,, +1 does not contain a full sheet separating L and R, 
that is, there exists a chain F =  { C(1 ) ..... C(r)} of level-(m + 1 ) cubes such 
that 

C(j) fig Sm+l forall 1 <~j<~r 

C ( 1 ) n L : ~  

C(r) n R ~  

C ( j ) n C ( j + I ) ~  for all l<~j<r 

(3.6) 

Since ,~,,, does contain a full sheet separating L and R, we must have 
C(i) c ~,, for some 1 ~< i ~< r; let B[I("); k] be the level-m block containing 
C(i). By (3.4), we have A[F'); k] ___ S .... and hence we see that there is a 
chain F ' =  { C(s) ..... C(t)} __q/" of level-(m + 1) cubes such that 

C(s) n O")A [II"'); k] ~ ,~ 

C(t) n O(~ k] ~ ~ (3.7) 

C ( j ) n C ( j + I ) r  for all s<~j<t 

and C(j) is not available for any s<~j<~t. But this means that the block 
B[I("'); k] is not isolated, contradicting the above. 

Hence we conclude that S,,+~ does contain a full sheet separating L 
and R, as required, l 

Proof of Lemma 2. Assume that C [ ~ ]  is good; then for every 
kE {0 ..... 4} a, the block B [ ~ ;  k] is isolated. We let 

F l = {Ir 1A[I ~l)] = 1} 

and so we see that the set 

s,= U {c[r,,]} 
[ ( I I E F  I 
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contains a full sheet separating L and R. We note that  l z [ l  (~)] = 
Z [ I  (t)] = 1 for every I (~) E F  ~. 

We now repeatedly apply L e m m a  3 with m = 1, 2 ..... n -  1 to deduce 
that  there exist sets F 2, F 3 ..... F" such that  1A[I ("')] = 1 and l z [ l  ( ' ) ]  = 1 
for every I("')E F"' and 

s,,,= U {c[i,"',]} 
i Ira) ~ F m  

contains a full sheet separating L and R. In particular, when m = n, there 
exists 

F"~ {l(')~Ja'": I z [ l  (")3 = 1} 

such that  

S,,= O {CEI(" ']} 
1 In) E f n 

contains a full sheet separat ing L and R. Since S, ~_ C,, we see that  sheet- 
percolation occurs in C, ,  complet ing the p roof  of  L e m m a  2. II 

We now consider site-percolation on the lattice I~ a, with sites being 
declared open independently with probabil i ty q. We let {0~--,OB(N)} 
denote the event {there exists an open path  from the origin to a vertex of 
aB(N) }, where 

OB(N) = {x ~ zd: max {[xi[: 1 ~< i~< d} = N} 

is the surface of the box of side length 2N centered at the origin. 

L e m r n a  4. Suppose that  q<pc(Ma). Then there exists a ( q ) > 0  
such that  for all N 

Pq( O ~ O B( N) ) <~ exp[ - N t r ( q ) ]  

This lemma, whose proof  we omit, is a modified version of a result of 
Menshikov,(~4) restated as Theorem 3.4 of  Grimmett .  (9) There it is given in 
the case of  bond  percolation on 7/a, but the proof  adapts  readily to site per- 
colation on Ma." 

We use L e m m a  4 to estimate the probabil i ty that a level-m block 
BEl(m); k ]  is isolated. Choose e > 0  such that  (1 - ~ ) p >  1 -pc(~a),  and 
define n = ( 1 - e ) p .  Let m < n and suppose that each level-(m + 1) cube is 
available with probabil i ty  n, independent of all other level-(m + 1) cubes. 
Let P ,  denote the corresponding product  probabil i ty measure on 
I-I~s~.,,,§ 1}. We compare  C,,,+~ to a sublattice of  I~ d as follows: Open  

822/82/3-4-31 
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vertices of Bu,.+,(M a) correspond to nonavailable cubes in Cr, + I, with two 
vertices being considered adjacent if and only if the corresponding cubes 
have at least a point in common. Thus the existence of an open path from 
one of the vertices corresponding to a level-(m + 1) cube contained in 
B[I( ' ) ;  k]  to the boundary of the box of side length 4M centered at this 
vertex will imply that the block B[I('); k] is not isolated. 

Hence we deduce that 

P,(B[I(");  k] is not isolated) ~< (�89 d Pi _,,(0 ~ OB(~M)) 

~< (�89 exp[ -2Mtr(1 - r t ) ]  (3.8) 

by Lemma 4, since 1 - n < pc(Ma). We shall take M =  M(e) sufficiently 
large so that 

Ma e x p [ -  ~ M t r ( 1 - n ) ]  <e  (3.9) 

where e = 1 - n i p .  
For every m ~< n, we examine the probability that each level-m cube is 

good. Let or = Ja'~ Ja'~u ... to ja,,, be the set of all indices of cubes at 
level ~<n. For each m<~n, let II"~(1),I~")(2) ..... I~"l(Ma") be some fixed 
ordering on ja.,,,. We place an ordering on j(, , i  as follows: For each 
I ( ' ~ J  a'' and T(~'6J d'm, where O<~m, rh<~n, we have I ( ' ) < 1  t"~) if and 
only if either m > r~, or m = tfi and I I ' l  precedes i ~'~) in the ordering on 
ja.m. The initial segment of or c"~ of length l is simply the set of the first l 
indices in the ordering on J( ' ) .  

Suppose that we are given a family { X [ l ] : I e J  ("1} o f  random 
variables, each X[I ]  taking values in {0, l}. For each I e J  ~"1, let ~ - ( I - )  
be the a-field in probability space generated by {X[$ ] :$<I} .  The 
appropriate sample space here is the product space 12=I-I~j,,,){0, 1}, 
points of which are represented as functions 03=(03(I): l ~ J  ~")) on J("). 
The natural partial order on /2  is given by 03~ ~<032 if and only if 03~(I)~< 
032(I) for all I ~ J  ~"~. We say that an event E on D is increasing if 031EE 
implies 03 2 ~ E whenever co i ~ 0,)2. 

L e m m a  5. Suppose that we are given an initial segment J of j ( , )  
of length l and a family {X[I]: I ~ 3  ~} of random variables each taking 
values in {0, 1}. Suppose that there exists p ~ [0, 13 such that 

P (X[ I ]  = 1 1 ~ ( I - ) )  ~>p 

for all I ~ J .  Then for every increasing event E depending only on the out- 
comes { X[ I ]: I ~ J }, we have 

P( E) >1 P p( E) 



Random Cantor Sets 1093 

where Pv is the product probability measure on 1--1i~./{0, 1} such that 
X[I ]  = 1 withprobabili ty p for all I ~ J .  

This result appears as Lemma3 of Falconer and Grimmett, c7) 
although no proof is given there. Also note that all of our conditional 
probability statements are in fact sure, rather than almost sure, since the 
sample space is finite. 

Proof of  Lomma 5. We proceed by induction on the length l of the 
initial segment of J(")  under consideration. Let J -  denote the initial 
segment of j ( , I  of length ( l -  1 ), and assume that for every increasing event 
E -  on J -  we have 

P(E-  ) >1 Pa(E- ) (3.10) 

Observe that by the hypothesis of the lemma, we have 

P({X[I ]  = 1} n B) >~pPfB) (3.11) 

for every event B on J - .  
Let E be an increasing event on J ;  then we can write E as a disjoint 

union 

E = { E i - n { X [ I ] = O } } w { E f  c~{X[I]=I}}  (3.12) 

where Ei-, E~ are events on J -  and 1 is t h e / t h  cube in the ordering on 
jc,) .  Since E is increasing, both Ei- and E~ are also increasing; moreover, 
E (  ~_ E l .  Then 

E = E ?  w { ( E f \ E ~ - ) n  {i"[13 = 1}} (3.13) 

and hence 

P(E) = P(E? ) + P ( ( E { \ E { )  n {X[I]  = 1 } ) 

>1 P(E? ) + pP(Ef  \ E  i- ) 

= (1 --p) P(E?)+pP(E~)  

>/(1 --p,) P,(E;-) + p e : ( E f  ) 

= Pv(E{ ) + pPp(Ef\E;-  ) 

= ep(E?)  + Pa((E;XE~') n {X[I] = I}) 

= Pa(E) 

by (3.11) 

by (3.10) 

since Pp is Bernoulli 

(3.14) 

completing the proof. | 
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If A and B are both increasing events on Jl"~ and Pp is the product 
probability measure as in Lemma 5, then we also have the F K G  in- 
equality: 

Pp(A n B) >1 Pp(A) Pp(B) (3.15) 

This result is well known in percolation theory; it was first proved by 
Harris tl~ and subsequently generalized by Fortuin et al. ~8~ 

L e m m a  6. If M is sufficiently large so that (3.9) holds, then for 
every I ~ J~") 

P(1AEI] = 1 1 ~ ( I - ) )  >~n 

where ~ ( I - )  is the a-field generated by { 1A[I]: ] '< I}. 

Proof of  Lemma 8. We proceed by induction on the ordering on 
or176 for every I ~ or ~'~ we suppose that 

P ( l a [ i ]  = 11 ~ ( i - ) )  >/ (3.16) 

holds for all T < I, and show that we then also have 

P(1A[I] = 1 I : ( l - ) ) t > n  (3.17) 

Certainly (3.17) is satisfied for the first M d" terms in the ordering on Jl"l ,  
because all level-n cubes are good by definition and hence are available 
with probability p > n. 

For m <n,  we place an ordering I~"')(1), I~'~(2) ..... I~"'~(M a"') on ja.,, 
as before. Within each level-m cube llml(j), 1 <~j<~M am, we also order the 
indices [l~"'}(j), k] of the 5 a blocks B[II'I(j);  k], k ~ {0,..., 4} d. Combining 
the two gives an ordering on the product space Ja'"'x {0 ..... 4} a of the 
indices of all the level-m blocks: We say that [I  ~"'~, k] < [ i  I'l, ~] if and 
only if either I I'~ precedes T ~"'~ in the ordering on jd,,,, or l~"'~=i ~''~ 
and [I ~'~ k] precedes [i  ~"'~, ~]. We label the level-m blocks in order as 
B(1),B(2) ..... B(5aMa"'), and fo r ' l  <~l<~5dM a" let A(I) denote the event 
{B(I) is isolated}. We observe that every d(l) is an increasing event on 
jd ,  m+ 1. 

We first examine the probability that the block B(1)=  C[II"'I(1)] is 
isolated. In this case, ~(I~"'~(1) - )  is the a-field generated by {1A[I]: 
i e J } ,  where J = J a ' " ' + ' w  ... w J  d'". Since A(1) is an increasing event on 
j a . , , + ~  j and J is an initial segment of J~"}, we can apply Lemma 5 to 
the random variables { 1A[I]: I S J }  to give 
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P(d(1)) ~ P~(d(1 )) 

/> l - ( � 89  e x p [ - s M a ( 1 - n ) ]  

> 1 -c/5 a (3.18) 

by (3.8), where P~ is the product probability measure as above. 
Next we consider t he / th  block B(l), 1 < l<~ 5aM am, in the ordering on 

the level-m blocks. In general, the event d(l) is not independent of {A(k): 
k < l}. For each l, let 

T(l) = {k < l: d(B(l), B(k)) < ~M-"'} 

and suppose that d(k) holds for every ke  T(l). We note that (~k~r(t)d(k) 
is also an increasing event on ja..,+~ and hence we find that 

d,k,'~ P.(A(I) n ~k~rU) d(k)) 
k e  7"(I) 

/> P . (J ( I ) )  (3.19) 

by the F KG inequality (3.15). 
For each k <1 such that kr  T(l), the annuli A(l) and A(k) around the 

blocks B(l) and B(k) have disjoint interiors, and hence have no level- 
(m + 1) cubes in common. Since we decide whether a block is isolated or 
not by examining solely the cubes contained in the annulus around that 
block, we see that under the product probability measure P ,  the events 
A(I) and d(k) are independent. Similarly, d(l) is independent of any 
combination of events d(k) for such k, that is, 

edd(l)  lG) = P,~(A(I)) (3.20) 

for every event G~ ~(l), where ~(l) is the a-field generated by {d(k): k </ ,  
k~ T(I)}. Combining (3.19) and (3.20), we find that 

P,~(A(I) kf~ru) d(k)nG)>/P,~(A(I)) 

> 1 --~/5 a (3.21) 

for every event by Gef9(l), by (3.8). 
Next we wish to determine the goodness of each level-m cube 

C[I(")(j)], 1 <~j<~ M a'', in order. To decide whether C[I(")(j)] is good or 
not, we need only examine the blocks B[I~"I(j); k] such that 

dist(B[I(""(j); k], P(j)) >1 ~M-"' 
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where 

Orzechowski 

P(J) = U { C[l("~(l)]:  C[I~"'l(l)] is not good} 
I < j  

as before; let N(j)  denote the number  of such blocks to be examined. We 
label these blocks as B~ ..... BNtj), where without loss of generality 
B~ < . . .  < Bjvtj~ are the first N(j)  blocks in the ordering on all the level-m 
blocks to be contained in C[ltm)(j)]. We let A i denote the event {Bi is 
isolated}. The cube C[l~ is good if and only if all the blocks 
B~ ..... But j) are isolated, and hence 

e , (  C[ l~  is good I ~ ( l t " l ( j ) -  )) 

(N'J) A i ~ ( l ' " " ( j ) - ) )  = en \i~1 

= e,,(zl~ I~ (P" ' ) ( j ) - ) )  x P=(A 2 [ { A~, ~ ( l " ' ( j ) -  )} ) 

• ..- • P,(zJN~j~I {Ai ..... zlN~jl_l, o~(l l" '~(j)-)})  

> ( 1 -- e/5a) N~j~ > 1 -- g (3.22) 

since N(j)<~ 5 d, by applying (3.21) to each of the terms in the product. We 
note that the event { C[It"'~(j)] is good} is increasing on 

l " J (1 )  w .. .  v l t " '~ ( j_  1)wJa., , ,+lw ... wja.  ,, 

and hence we can apply Lemma 5 to deduce that 

P( C[II""(j) ] is good l~ ' ( l l" ' ( j )  - )) 

( m )  . >~P,(C[I  ( j ) ]  is good l .~ ' ( l~  )) 

> I - E  

by (3.22). Finally we note that 

(3.23) 

{ l a [ I ' " " ( j ) ]  = 1} = { C[I '" '~(j)]  is good} n { Z [ I " ' ( j ) ]  = 1} (3.24) 

P(1A[I" ' ( j ) ]  = 11 ~ ( I " l ( j ) - ) )  > (1 - e ) p  = n  

and therefore 

as required. | 

(3.25) 
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T o  conc lude  the p r o o f  of  T h e o r e m  2, we take  M ( e )  sufficiently large so 
tha t  (3.9) ho lds  for all M>>.M(e)  and  app ly  L e m m a s  6 and  5 to deduce  

tha t  

P ( C [ ~ ]  is g o o d )  ~> P=(C[  ~ ]  is good )  

>~ 1 - e  (3.26) 

The  va lue  o f  M ( e )  chosen  works  un i fo rmly  for all n, and  hence  by 
L e m m a  2 

P ( shee t -pe rco l a t i on  in C,,)~> 1 - e  (3.27) 

for all n >i 1, as required.  II 
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